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Levels of Models in Optics

•

Geometric optics - rays, reflection, refraction 

Physical optics (Fourier optics) - diffraction, scalar waves 

Electromagnetics - vector waves, polarization 

Quantum optics - photons, interaction with matter, lasers
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Part 2: Fourier (or Physical) Optics

Arago’s (or Fresnel, or Poisson) spot

photo of the shadow of a 5.8 
mm obstacle  

(from wikipedia.org)

http://wikipedia.org
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Maxwell’s Equations: Light as an 
electromagnetic wave (Vectors!)
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Light as an EM wave

• Light is an electromagnetic wave phenomenon, E 
and B are perpendicular 

• We detect its presence because the EM field 
interacts with matter (pigments in our eye, 
electrons in a CCD, …)
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Physical Optics is based upon the scalar 
Helmholtz Equation (no polarization)

• In free space 

• Traveling waves 

• Plane waves 
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c2

∂2

∂t 2
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kHelmholtz Eqn., 
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Dispersion and phase velocity

• In free space 

– Dispersion relation k (ω) is linear function of  ω 
– Phase velocity or propagation speed = ω/ k = c = const. 

• In a medium 
– Plane waves have a phase velocity, and hence a wavelength, that 

depends on frequency 

– The “slow down” factor relative to c is the index of refraction, n (ω)

k =ω c  where k ≡ 2π λ  and ω ≡ 2πν

k ω( )=ω vphase

vphase = c n ω( )
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Optical path – Fermat’s principle

• Huygens’ wavelets 

• Optical distance to radiator:

Δx = v Δt = c Δt n
c Δt = n Δx
Optical Path Difference = OPD = ndx∫

• Wavefronts are iso-OPD surfaces

• Light ray paths are paths of least* time (least* OPD)

*in a local minimum sense
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What is Diffraction?

In diffraction, apertures of an optical system 
limit the spatial extent of the wavefront

Aperture

Light that has 
passed thru 
aperture, seen 
on screen 
downstream
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Diffraction Theory

We 
know 
this

Wavefront U
What is U here?



11

Diffraction as one consequence of 
Huygens’ Wavelets: Part 1

Every point on a wave front acts as a source of tiny 
wavelets that move forward.

Huygens’ wavelets for an infinite plane wave
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Diffraction as one consequence of 
Huygens’ Wavelets: Part 2

Every point on a wave front acts as a source of tiny 
wavelets that move forward.

Huygens’ wavelets when part of a plane wave is 
blocked
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Diffraction as one consequence of 
Huygens’ Wavelets: Part 3

Every point on a wave front acts as a source of tiny 
wavelets that move forward.

Huygens’ wavelets for a slit



From Don Gavel
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The size of the slit (relative to a 
wavelenth) matters
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Rayleigh range

• Distance where diffraction overcomes paraxial 
beam propagation
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Fresnel Number

• Number of Fresnel zones across the beam diameter
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Fresnel vs. Fraunhofer  diffraction

• Very far from a point source, 
wavefronts almost plane waves.  

• Fraunhofer approximation valid 
when source, aperture, and 
detector are all very far apart (or 
when lenses are used to convert 
spherical waves into plane waves)

• Fresnel regime is the near-
field regime: the wave fronts 
are curved, and their 
mathematical description is 
more involved.

S

P
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Regions of validity for diffraction 
calculations

The farther you are from the slit, the easier it is to 
calculate the diffraction pattern

Near field Fresnel Fraunhofer 
(Far Field)
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D2

Lλ
≥1 N =

D2

Lλ
<<1N =

D2

Lλ
>>1

D

L



mask

Credit: Bill Molander, LLNL
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Fraunhofer diffraction equation

F is Fourier Transform
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Fraunhofer diffraction, continued

• In the “far field” (Fraunhofer limit) the 
diffracted field U2 can be computed from the 
incident field U1 by a phase factor times the 
Fourier transform of U1 

• “Image plane is Fourier transform of pupil plane”

F is Fourier Transform
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Image plane is Fourier transform of pupil 
plane

• Leads to principle of a “spatial filter” 

• Say you have a beam with too many intensity fluctuations 
on small spatial scales 

– Small spatial scales = high spatial frequencies 

• If you focus the beam through a small pinhole, the high 
spatial frequencies will be focused at larger distances from 
the axis, and will be blocked by the pinhole
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Details of diffraction from circular 
aperture

1) Amplitude

2) Intensity

First zero at 
r = 1.22 λ/ D

FWHM
 λ/ D



Rayleigh 
resolution 

limit:
Θ = 1.22 λ/D

2 unresolved 
point sources

Resolved

Credit: Austin Roorda
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Diffraction pattern from hexagonal Keck 
telescope

Ghez: Keck laser guide star AO

Stars at Galactic Center
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Takeaways

• Light behavior is modeled well as a wave 
phenomena (Huygens, Maxwell) 

• Description of diffraction depends on how far 
you are from the source (Fresnel, Fraunhofer) 

• Geometric and diffractive phenomena seen in 
the lab (Rayleigh range, diffraction limit, depth 
of focus…) 

• Image formation with wave optics
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Deformable Mirrors
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Outline of Deformable Mirror Lecture

• Performance requirements for wavefront correction 

• Types of deformable mirrors 
– Actuator types 

– Segmented DMs 

– Continuous face-sheet DMs 

– Bimorph DMs 

– Adaptive Secondary mirrors 

– MEMS DMs 

– (Liquid crystal devices) 

• Summary: fitting error, what does the future hold?
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Deformable mirror requirements: r0  sets number of degrees of 

freedom of an AO system

• Divide primary mirror into “subapertures” of 
diameter r0

• Number of subapertures ~ (D / r0)2  where  r0  is 
evaluated at the desired observing wavelength
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Overview of wavefront correction

• Divide pupil into regions of ~ size r0 , do “best fit” to 
wavefront.  Diameter of subaperture = d 

• Several types of deformable mirror (DM), each has its own 
characteristic “fitting error” 

σfitting
2 = µ ( d / r0 )5/3  rad2 

• Exactly how large d is relative to r0 is a design decision; 
depends on overall error budget
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DM requirements  (1)

• Dynamic range: stroke (total up and down range) 
– Typical “stroke” for astronomy depends on telescope diameter: 

± several microns for 10 m telescope 
± 10-15 microns for 30 m telescope 

-  Question: Why bigger for larger telescopes?  

• Temporal frequency response: 
– DM must respond faster than a fraction of the coherence time τ0  

• Influence function of actuators: 
– Shape of mirror surface when you push just one actuator (like a 

Greens’ function) 
– Can optimize your AO system with a particular influence function, 

but performance is pretty forgiving
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DM requirements  (2)

• Surface quality: 
– Small-scale bumps can’t be corrected by AO 

• Hysteresis of actuators: 
– Repeatability 
– Want actuators to go back to same position when you apply the same 

voltage   

• Power dissipation: 
– Don’t want too much resistive loss in actuators, because heat is bad 

(“seeing”, distorts mirror) 
– Lower voltage is better (easier to use, less power dissipation) 

• DM size: 
– Not so critical for current telescope diameters 
– For 30-m telescope need big DMs: at least 30 cm across 

» Consequence of the Lagrange invariant y1ϑ1 = y2ϑ2
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Types of deformable mirrors: 
conventional (large)

• Segmented 
– Made of separate segments 

with small gaps 

• “Continuous face-sheet”  
– Thin glass sheet with 

actuators glued to the back 

• Bimorph 
– 2 piezoelectric wafers bonded 

together with array of 
electrodes between them.  
Front surface acts as mirror.
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Types of deformable mirrors:  
small and/or unconventional (1)

• Liquid crystal spatial light 
modulators 
– Technology similar to LCDs 
– Applied voltage orients long thin 

molecules, changes n 
– Not practical for astronomy 

• MEMS (micro-electro-mechanical 
systems) 
– Fabricated using micro-

fabrication methods of integrated 
circuit industry 

– Potential to be inexpensive
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Types of deformable mirrors:  
small and/or unconventional (2)

• Membrane mirrors 
– Low order correction 
– Example: OKO (Flexible 

Optical BV) 

• Magnetically actuated mirrors 
– High stroke, high bandwidth 
– Example: ALPAO



39

Typical role of actuators in a 
conventional continuous face-sheet DM

• Actuators are glued to back of thin glass sheet (has a 
reflective coating on the front) 

• When you apply a voltage to the actuator (PZT, PMN), it 
expands or contracts in length, thereby pushing or 
pulling on the mirror

V
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Example from CILAS
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Types of actuator: Piezoelectric

• Piezo from Greek for Pressure 

• PZT (lead zirconate titanate) gets longer 
or shorter when you apply V 

• Stack of PZT ceramic disks with integral 
electrodes 

• Displacement linear in voltage 

• Typically 150 Volts                                  
⇒ Δx ~ 10 microns 

• 10-20% hysteresis 
(actuator doesn’t go back to exactly  
where it started)
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Types of actuator: PMN

• Lead magnesium niobate (PMN) 

• Electrostrictive: 

– Material gets longer in response to an 
applied electric field 

• Quadratic response (non-linear) 

• Can “push” and “pull” if a bias is applied 

• Hysteresis can be lower than PZT in some 
temperature ranges 

• Both displacement and hysteresis depend on 
temperature (PMN is more temperature 
sensitive than PZT)

  Good reference (figures on these slides): www.physikinstrumente.com/en/products/piezo_tutorial.php
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Continuous face-sheet DMs:            
Design considerations

• Facesheet thickness must be large enough to maintain flatness during 
polishing, but thin enough to deflect when pushed or pulled by actuators 

• Thickness also determines “influence function” 
– Response of mirror shape to “push” by 1 actuator 
– Thick face sheets  ⇒ broad influence function 

– Thin face sheets ⇒ more peaked influence function 

• Actuators have to be stiff, so they won’t bend sideways 
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Palm 3000 High-Order Deformable 
Mirror: 4356 actuators!

Xinetics  Inc. for Mt. Palomar “Palm 3000” AO system

Credit: A. Bouchez
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Palm 3000 DM Actuator Structure

Prior to face sheet bonding

• Actuators machined from 
monolithic blocks of PMN 

• 6x6 mosaic of 11x11 
actuator blocks 

• 2mm thick Zerodur glass 
facesheet 

• Stroke ~1.4 µm without face 
sheet, uniform to 9% RMS.

Credit: A. Bouchez
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Palm 3000 DM: Influence Functions

• Influence function: 
response to one 
actuator 

• Zygo interferometer 
surface map of a 
portion of the mirror, 
with every 4th actuator 
poked 

Credit: A. Bouchez
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Bimorph mirrors are well matched to 
curvature sensing AO systems

• Electrode pattern shaped 
to match sub-apertures in 
curvature sensor 

• Mirror shape W(x,y) obeys 
Poisson Equation

∇2 ∇2W + AV( )= 0

where A = 8d31 / t 2

d31  is the transverse piezo constant
t  is the thickness
V(x,y) is the voltage distribution

Credit: A. Tokovinin
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Bimorph deformable mirrors: embedded 
electrodes

Credit: CILAS

Electrode Pattern Wiring on back

• ESO’s Multi Application Curvature Adaptive Optics (MACAO) system uses a 
60-element bimorph DM and a 60-element curvature wavefront sensor

• Very successful: used for interferometry of the four 8-m telescopes 
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Deformable Secondary Mirrors

• Pioneered by U. Arizona and Arcetri Observatory in Italy 

• Developed further by Microgate (Italy) 

• First Generation: MMT 336 actuator adaptive secondary 

• Second Generation: LBT and Magellan telescope (672 
actuators) 

• Third Generation: VLT AO facility  (1170 actuators) 

• Lower Power approach being explored by UH, TNO, and 
here at UCSC.
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Cassegrain telescope concept

Secondary mirror
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General concept for adaptive secondary 
mirrors (Arizona, Arcetri, MicroGate)

• Voicecoil actuators are 
located on rigid backplate 
or “reference body” 

• Thin shell mirror has 
permanent magnets glued 
to rear surface; these 
suspend the shell below the 
backplate 

• Capacitive sensors on 
backplate give an 
independent measurement 
of the shell position

Diagram from MicroGate’s website
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Shell is VERY thin!

Photo Credit: ADS International 
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Voice-Coil Actuators viewed from the side
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Deformable secondaries:  
embedded permanent magnets

   LBT DM: magnet array       LBT DM: magnet close-up

Adaptive secondary DMs have inherently high stroke: 
no need for separate tip-tilt mirror!
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Adaptive secondary mirrors

• Advantages: 
– No additional mirror surfaces  

» Lower emissivity.  Ideal for thermal infrared. 
» Higher reflectivity.  More photons hit science camera. 

– Common to all imaging paths except prime focus 
– High stroke; can do its own tip-tilt 

• Disadvantages: 
– Harder to build: heavier, larger actuators, convex. 
– Harder to handle (break more easily) 
– Must control mirror’s edges (no outer “ring” of actuators outside the 

pupil)   
– Current generation actuator are inefficient (each actuator requires 

~0.3 W)
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It Works! 10 Airy rings on the LBT!

• Strehl ratio > 80%
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Voice Coil actuators

• Current generation: fixed coil pushes and pulls on 
moving magnet 

• Most of magnetic flux is in air, reducing 
efficiency 

• TNO has developed a “variable reluctance” design 
that greatly improves the efficiency (perhaps 
requiring ~0.03 W /actuator)
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Concept Question

• Assume that its adaptive secondary mirror gives the 6.5 
meter MMT telescope’s AO system twice the throughput 
(optical efficiency) as conventional AO systems. 

– Imagine a different telescope (diameter D) with a 
conventional AO system. 

– For what value of D would this telescope+AO system 
have the same light-gathering power as the MMT?
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Cost scaling will be important for future 
giant telescopes

• Conventional DMs 
– About $1000 per degree of freedom 
– So $1M for 1000 actuators 
– Adaptive secondaries cost even more. 

» VLT adaptive secondaries in range $12-14M each 

• MEMS (infrastructure of integrated circuit world) 
– Less costly, especially in quantity 
– Currently ~ $100 per degree of freedom 
– So $100,000 for 1000 actuators 
– Potential to cost 10’s of $ per degree of freedom
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What are MEMs deformable mirrors?

• A promising new class of 
deformable mirrors, MEMs DMs, 
has recently emerged 

• Devices fabricated using 
semiconductor batch processing 
technology and low power 
electrostatic actuation

• Potential to be less expensive 
($10 - $100/actuator instead of 
$1000/actuator)

MEMS: Micro-electro-mechanical systems

4096-actuator MEMS deformable 
mirror. Photo courtesy of Steven 
Cornelissen, Boston Micromachines
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One MEMS fabrication process:  
surface micromachining

1

2

3
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Boston University MEMS Concept

Electrostatically 
actuated 
diaphragm 

Attachment 
post 

Membrane 
mirror 

Continuous mirror

• Fabrication: Silicon 
micromachining 
(structural silicon and 
sacrificial oxide) 

• Actuation: Electrostatic 
parallel plates

Boston University 
Boston MicroMachines
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Boston Micromachines: 4096 actuator 
MEMS DM

• Mirror for Gemini Planet Imager 

• 4096 actuators 

• 64 x 64 grid 

• About 2 microns of stroke
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MEMS testing: WFE < 1 nm rms in 
controlled range of spatial frequencies

Credit: Morzinski, Severson, Gavel, Macintosh, Dillon (UCSC)
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Another MEMS concept:  
 IrisAO’s segmented DM

• Each segment has 3 degrees of freedom 

• Now available with 100’s of segments 

• Large stroke: > 7 microns
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• IrisAO PT489 DM 

• 163 segments, each with 
3 actuators 
(piston+tip+tilt) 

• Hexagonal segments, 
each made of single 
crystal silicon 

• 8 microns of stroke 
(large!)
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Issues for all MEMS DM devices

• “Snap-down”  
– If displacement is too large, top sticks to bottom and 

mirror is broken (can’t recover) 

• Robustness 
– Sensitive to humidity (seal using windows) 

• Defect-free fabrication 
– Current 4000-actuator device still has quite a few 

defects
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Concept Question

• How does the physical size (i.e. outer diameter) of a 
deformable mirror enter the design of an AO system? 

– Assume all other parameters are equal: same number of 
actuators, etc.
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Fitting errors for various DM designs

σfitting
2 = µ ( d / r0 )5/3  rad2 

DM Design         µ   Actuators / segment 

Piston only,      1.26     1 
square segments 

Piston+tilt,     0.18     3 
Square segments 

Continuous DM    0.28              1
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Consequences: different types of DMs need 
different actuator counts, for same conditions

• To equalize fitting error for different types of DM, number of actuators 
must be in ratio 

• So a piston-only segmented DM needs  
   ( 1.26 / 0.28 )6/5 =  6.2 times more actuators than a continuous face-

sheet DM! 

• Segmented mirror with piston and tilt requires 1.8 times more actuators 
than continuous face-sheet mirror to achieve same fitting error:      N1 = 
3N2 ( 0.18 / 0.28 )6/5 = 1.8 N2 

N1
N2

⎛
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⎞
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Characterizing a Deformable Mirror

• A deformable mirror is a physical device that must be 
characterized to fit a wavefront accurately. 

• Typical approach is to measure a deformable mirror with a 
phase shifting interferometer. 

• Each actuator is “poked” and the resulting influence on the 
wavefront is measured.   

• These measurements are called the influence functions 
of the DM. 

• These measurements are typically converted to a Zernike or 
similar basis set to be able to drive the mirror accurately.
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Summary of main points

• Deformable mirror acts as a “high-pass filter” 
– Can’t correct shortest-wavelength perturbations 

• Different types of mirror have larger/smaller fitting error 

• Large DMs have been demonstrated (continuous face 
sheet, adaptive secondary) for ~ 1000 - 3000 actuators 

• MEMs DMs hold promise of lower cost, more actuators 

• Deformable secondary DMs look very promising 
– No additional relays needed (no off-axis parabolas), fewer optical 

surfaces 

– Higher throughput, lower emissivity 

– Early versions had problems; VLT has re-engineered now


